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Programs to compute 2 exist in the run-time support libraries of many a computer system,
but those programs tend to disagree about what to do with 0° and even (—3)3, sometimes
producing reasonable values like 1 and -27 respectively, often unreasonable values like 0 and
427, usually warning messages, and perhaps & mixture of the three. The purpose of this
note is to present a rationale for treating the special cases of z¥ in a uniform way regardless
of the programming language and the underlying computer hardware. The rationale has
three components. One is historical, based upon a decent regard for past practice even
when it has been illogical. Another component is algebraic, based upon the axioms that
are most often found in texts; these axioms define z/ for integer variables j. The third
component, analytic, defines z¥ when y is not an integer.

Our goal should be Intellectual Economy, which translates here into consistency with a
parsimonious set of axioms or principles from which anyone can easily deduce how to reach
his goals without being obliged to memorize too much. The path to our simple goal is beset
by complications. Some are posed by singularities like 0, which violates a few of the laws
by which all other numbers abide, and oo, which is ambiguous too. More onerous for the
users of the run-time library, and a major challenge to its implementor, are complications
posed by the finite limits that circumscribe all computers. These limitations are associated
with roundoff, over/underflow thresholds and, in many computers, no way to express oo
nor the concept called NaN (Not-a- Number) by the IEEE standards 754 and 854, called
Indefinite by CRAYs and CDC Cybers, and called Reserved Operand on DEC PDP-11s
and VAXs. These limitations would be less bothersome if they did not vary so much from
one computer family to another; but because they do vary, we shall pursue an exculpatory
policy, absolving the implementor of blame if his version of z¥ is scarcely worse than it has
to be in consequence of his computer’s limitations. '

Notation:
In keeping with the Fortran tradition, the letters ¢, j, k, !, m and n will be reserved for
integer valued variables; we shall further reserve m and n for positive integers.

Let R denote the finite real numbers and R’ the nonzero finite reals. Let the symbols “+00”
represent + Infinity; we’ll omit the signs just when they do not matter. Next let X denote
that extension of the real numbers that includes Infinity; that is

X=RU{tcc} and R={0}JUR.

The letters a, b, ¢, ..., g, h are reserved for finite real (R) and the lettersp, ¢, 7, ..., Z, ¥, 2

for extended real (X) variables. These reservations will be altered later when complex
" numbers appear. Finally, the symbol “NaN” stands for “Not-a-Number” or “Indefinite”
or “Reserved Operand”, and is the only thing in our universe that can violate the identity
z =z
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Below are the Multiplication and Division tables for a system XU NaN consisting of the
extended reals and NaNs. (No occasion will arise herein to add or subtract these entities.)
The tables’ columns have been so ordered as to render obvious the symmetry implied by the
identity z/y = z - (1/y). In the tables, certain side-effects are indicated by asterisks *. In-
stances marked NaN * also signal “Invalid Operation”; the instance marked oo * also signals
“Divide-by-Zero”, which actually signifies “Infinity created precisely from finite operands”.
The signals are side-effects; other signals may be associated with overflow, underflow and /or
Inezact Operation on some computers, as we shall now digress to explain.

MULTIPLICATION z - y
y=0 |yin R' | y= o0 | yis NaN
z=0 0 NaN *
zin R Ty y
T =00 NaN * %)
z is NaN T TOry

DIVISION z/y

y=oo |yin R | y=0 | yis NaN
z=0 0 NaN *
zin R z/y oo * Ly
=00 NaN * 00
z is NaN z zory

Exceptions, Defaults, Signals, and other Side-Effects:

These topics deserve a comprehensive and definitive treatment, but no such thing is available
yet. What follows instead is an attempt to acquaint the reader with the issues and to bring
some order to an incoherent scene. Brevity has not been achieved.

The laws of arithmetic cannot always be obeyed punctiliously. Exceptions must arise either
because of singularities like 0/0 or because of limitations like roundoff and over/underflow.
When an exception occurs (we say it is signaled), certain concomitant events may occur
too, depending upon the provenance of the computer and its programming language:

A value may be delivered. For example, machines that conform to the IEEE standards get
oo for 1/0 and NaN for 0/0; but IBM 370 VS Fortran specifies the overflow threshold
7.2 x 1075 for 1.0/0.0 and 0.0 for 0.0/0.0, while APL specifies 0/0 = 1. Many otherwise
respectable machines underflow quietly to 0. All these values, delivered in the absence of
explicit requests for something else, are called Default values; the ones marked by asterisks
in the tables above are specified by IEEE standards. Some machines lack any NaN and/or
oo (IBM 370s lack both), so they have to deliver some other default values — for instance,
a huge value in lieu of oo. Some computing environments permit a programmer or user
to substitute his own choice in lieu of any default value; we call doing so presubstitution
whenever it must precede the exception. (Presubstitution is implementable, with suitable
but inexpensive hardware support, on machines that are obliged by pipelining and other
forms of concurrency to interrupt imprecisely on an exception, leaving its locus vague. Other
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kinds of substitution require strictly sequential execution, which is slower or more expensive
. or both.)

A flag may be raised. As a side-effect, the exception may alter a variable that the program
can later test to discover that that exception occurred. ERRNO in the language C is an
example of a flag. The IEEE standards specify five flags, one for each of the five exceptions
INVALID-OPERATION, OVERFLOW, DIVIDE-BY-ZERO, UNDERFLOW and INEX-
ACT, but the specifications are vague about the types of these variables, which may be
integers or pointers rather than merely boolean. Most computing environments have no
flags accessible by software from higher-level languages; some computers lack the hardware
to support certain flags at all. For example, none but the IEEE standards’ machines can
support INEXACT flags. Underflow cannot be detected on CDC Cybers and CRAYSs except
by testing for 0 among default results; and the same is true for most practical purposes on
IBM 370°s and DEC VAXs because their compilers disable the underflow traps by default.

A trap may occur. This will deflect the path of the program’s execution to a trap-handler,
if one has been prescribed, or else terminate execution. Many computing environments
provide no easy alternative to termination for INVALID-OPERATION, OVERFLOW and
DIVIDE-BY-ZERO. Some programming languages offer statements that begin with some-
thing like ’

ON ERROR ... ( BASIC ) or ON OVERFLOW ... ( PL-1)

to permit a limited degree of trap-handling for those exceptions that the hardware can de- -
tect. In ADA, some exceptions execute an implicit RAISE NUMERIC_ERROR statement,
which is the way ADA programs trap to a trap-handler that has been coded after an

EXCEPTION WHEN NUMERIC_ERROR = ...

statement at the end of a block of code. Standardized language support for trapping must
be undermined by uncertainty about two issues. First, where may the program go after the
handler? An ADA program must exit the block. BASIC dialects let programs RESUME
execution, some at, some after the statement or line that trapped, but the dialects disagree
about the syntax and/or scope (over which statements does a handler reign?) of trap
handling. Second, which events will precipitate traps? An ADA program run on a CDC
Cyber or CRAY cannot RAISE NUMERIC_ERROR for underflow. An ADA programmer
who finds a default 0o or huge number for (nonzero)/0.0 quotients satisfactory can declare

PRAGMA SUPPRESS( DIVISION_CHECK ),

but only at the risk of losing control over 0.0/0.0 quotients. That the two kinds of quotients
deserve different treatment is acknowledged by authorities as diverse as the IEEE standards,
APL, and IBM 370 VS Fortran.

By now the reader should be persuaded that the computing world is not of one mind about
exceptions. Perhaps they are characterized by that diversity, so that the only thing we may
say about them without fear of contradiction is this ...

Fundamental Principle of Ezxceptions: To any simple policy, enunciated in ad-
vance to cope with a class of exceptions, there is always someone who has
good reason to take exception.
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If exception handling is to progress from psychology to science, a taxonomy that identifies
kinds of exceptions and distinguishes them from their presumed causes must be established.
Such a taxonomy is provided by the IEEE standards for floating-point arithmetic; as sum-
marized below, it applies to non-conforming machines too. The five-letter names supplied
below are, alas, not specified by the standards, but are offered here until better suggestions
come forward. Each name identifies a flag that, if the machine has it, records when at least
one exception of that name has occurred.

INXCT:

Inezact Result is signaled when a computed result is in error due ‘to over/underflow or
roundoff; only machines that conform to the IEEE standards are equipped with hardware to
record INXCT. The error due to roundoff would normally be ignored; but not during integer
computations in floating-point when integers grow so big that their last few bits are rounded
off, and not during a few exotic computations involving something called “preconditioning.”
The error due to roundoff is not usually ascertained, but cannot exceed the uncertainty due
to roundoff, which amounts to half the gap between the computed result and its nearest
representable neighbors on machines that round correctly. Machines conforming to the
IEEE standards do round the five algebraic operations +, —, -, / and ,/ correctly; many
other machines do not, and their bigger uncertainties can also be much bigger for some of
these operations than for others.

UNFLO: :
Underflow is signaled during an attempt to compute a nonzero result that is too close
to 0.0 to be computed in the normal way. If the default result for every underflow is
0.0, we say “underflow flushes to zero,” and then the uncertainty introduced by underflow
can grossly exceed the uncertainty due to roundoff in numbers slightly bigger than the
underflow threshold; this is what happens on almost all machines that do not conform to
the IEEE standards. Conforming machines underflow “gradually;” this means that the
absolute uncertainty introduced by underflow never exceeds the absolute uncertainty due
to roundoff. CRAYs and CDC Cybers lack the hardware to record UNFLO. The CDC
Cyber 17x machines suffer from “partial underflow:” tiny numbers closer to 0.0 than twice
the underflow threshold behave normally for adds, subtracts and compares, but are mistaken
for 0.0 by divides and multiplies.

DIVBZ:

Divide-by-Zero is signaled whenever the result to be computed from finite operands should
be oo exactly except possibly for the absence of that symbol from the machine’s floating-
point numbers; among those deficient machines the default result, if any, is typically one
of the overflow thresholds. Therefore DIVBZ ought to be signaled not only for 3.0/0.0 but
also for log(0.0) and arctanh(1.0). Some computers confuse DIVBZ with OVFLO and/or
INVLD below.

OVFLO:

Qverflow is signaled during an attempt to compute a finite result that is too big to be
computed in the normal way and must instead be replaced by a default result, either oo
or an overflow threshold, if computation is to continue. The CRAY’s overflow thresholds
are ambiguous because multiply overflows at results of which some are unexceptional for
add/subtract, and divide overflows if the divisor is too small too.
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INVLD:

Invalid Operationis signaled when any other signal (or none) would be more likely to mislead
than help; its default value, a NaN, Indefinite or Reserved Operand, is preferable to any
other for a similar reason but unavailable on some machines, for which the choice of default
should ideally be different from any other values that the operation could produce validly.
Different kinds of Invalid Operations can be worth distinguishing even though they all raise
the same INVLD flag: '

ZOVRZ: 0.0/0.0
IOVRI: 00/o0
INVDV: Either of the two invalid divisions above.
ZTMSI: 0.0-00
IMINI: 00 - 00

FODOM: Function computed outside its domain; e.g. ,/(-3).

The foregoing exceptions are phenomena that we distinguish from their causes. Every
INVLD, OVFLO or DIVBZ exception can be attributed to a singularity, as we shall explain
after we note the last side-effect here:

+0:

The Sign of Zero is a side-effect specified closely by the IEEE standards but ignored by
other arithmetics. It can be ignored too by programmers who do not care about it, but
matters crucially to others, especially those concerned with complex arithmetic and efficient
representations of conformal maps of slitted domains; more about that under Topological
Removal of a Singularity below. For now, care taken with the sign of zero will be justified by
asking whether identities like b/(b/z) = z can be satisfied at least roughly for all extended
reals including £ = £00? YES on a machine conforming to the IEEE standards, otherwise
NO.

Singularities:

All normal floating-point computations are intended to approximate piecewise analytic func-
tions. The domain of such a function is a (normally finite) collection of regions; throughout
some open neighborhood of every point in the relative interior of a region, the function may
be represented by a convergent power series. A singularity of the function is one of those
regions’ boundary points; there the function or a derivative is usually undefined. Comput-
ing the function at a singularity might well signal INVLD or DIVBZ; near a singularity,
OVFLO might be encountered.

Some singularities are removable by (re)definition of either the function’s value or the re-
gion’s topology. Defining sin(z)/z to be 1 when z = 0, or (22 — 4*)/(z — y) to be 3y°
when z = y, illustrates (re)definition of value. Redefinition of topology is more subtle:
consider for example all the rational functions of a real variable z; their singularities are
all poles where the functions and their derivatives become infinite. Now close the real axis
by adjoining the single point at co; one way to do so is to identify z on the real axis with
6 = 2arctan(z) on the circle, identifying z = £00 with a single point § = £ on the circle.
In this closed topology, every rational function f(z) is freed from singularities by being
identified with an analytic map 2arctan(f(tan(8/2))) of the circle to itself, thus turning oo
into a point as unexceptional as 0.
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Most singularities cannot be removed. This is fortunate because a world without singular-
ities is a world without Physics. Attempts to bypass singularities ainount to attempts to
extend a function’s definition beyond its original domain in a natural way, a way that is not
arbitrary but is predictable by a thoughtful person. No such way need exist. For example
consider ,/z, which is well defined as a real function only for z > 0. To avoid signalling
INVLD or FODOM when z < 0, many a well-intentioned computer hacker has extended
the definition of ,/z; three examples are

Ve i=/lzl, or sign(z)-/lz], or 05-(1+ sign(z)) - /||

The third (from an old UNIX math. library) is abominable, but it is merely the average
of the previous two, and who can say which of those is better? None of the three satisfies
the crucial relationship (‘/:e:)2 = z when z < 0; that can be satisfied only by an extension
to complex variables. Introducing those unbidden into a world of real computation is no
panacea either, because the complex extension of /& must violate some familiar identity
like (,/z) - (,/y) = \/(z - y) which, because it is always valid for nonnegative arguments z
and y, might mistakenly be presumed valid for the extension too. Such a mistake can give
rise to an obscure anomaly like the following:

Let f(z) := Az +1); g(z) := fz - 1); h(z) := \/(arz — 1); in the absence of
tests or absolute value signs, we might take the identity f(z) . g(z) = h(z) for
granted since it is valid (to within roundoff) for all z > 1. But when z < -1
then f(z)- g(z) is real although f(z)-g(z) = —h(z).

That is why the least confusing choice for , /(—4) is NaN and an INVLD or FODOM signal.
In general, the removal of singularities by extension of definitions is, like cosmetic surgery,
to be undertaken only with good reason and then with good taste.

The mathematical procedures that remove singularities have their computational analogs.
Programmers can (re)define functions in two ways. The most familiar ways entail tests and
branches or conditional assignments like

f(z):= if z =0 then 3 else sin(3 - z)/z;
a better way entails presubstitution to avoid explicit tests:

Presubstitute 3 for ZOVRZ;
.. 8in(3-z)/z....

(An early but unwise instance of presubstitution is APL’s rule that 0/0 = 1, but the
foregoing instance shows why that can be dangerous as a universal policy.) Presubstitution
is preferable to explicit tests whenever the presubstituted values change only rarely, since
it minimizes the time wasted upon operations whose unexceptional status would otherwise
have to be confirmed by test.

Topological Removal of a Singularity entails two concepts that go beyond merely closing
a function’s domain by incorporating into it its boundary points. One concept entails a
choice of metric; the second concerns ambiguity. The criterion by which we decide when
two numbers are so close that they may be regarded as practically indistinguishable reflects
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our choice of metric. To ignore UNFLO is to choose a metric by which all sufficiently tiny
numbers are regarded as practically indistinguishable from 0.0. A change of metric occurs
when we go from the finite reals R to the extended reals X in so far as we then regard all
sufficiently big numbers as neighbors (close approximations) of 0o, and then we may ignore
OVFLO. ‘

Pernicious ambiguity arises when we close the real axis with just one point at co. Program-
mers must take care that 400 and —oo are then treated as equal, which can be a nuisance
to remember, somewhat relieved by a function PROJ(z) that maps every infinite = onto
+00 and leaves every other z unchanged.

Benign ambiguity can arise when we close the graph of a function with a discontinuity. (The
reason for closing a graph is to put all its extreme points onto it.) For example, the graph
of the expression z/|z| consists of two open pieces coinciding with the graph of sign(z) for
finite nonzero z in R’, an open set. The graph of sign(z) is closed at its distal ends where
z = +0o0 but not at z = 0, where sign(z) is discontinuous; assigning sign(0) = 0, as is
customary, defines sign(z) over a closed set X, the extended reals, but leaves the graph of
sign(z) in three pieces, one dot and two half-open line segments:

Graphs of three similar functions over the eztended reals X

Gr—— G———

-+

sign(z) SIGN(1.0,z) CopySign(1,z)

The Fortran intrinsic function SIGN(1.0, z) matches sign(z) except for SIGN(1.0,0.0) = 1.0;
its graph has two pieces, one a closed line segment and the other half-open. The IEEE stan-
dard function CopySign(1,z) matches the others except at +0 where CopySign(1,+0) = +1
and CopySign(1,-0) = -0; this ambiguity gives it a closed graph on a domain where z = 0
is represented twice. Thus, when they are available, CopySign and +0 offer a programmer
a convenient way to distinguish the sides of a boundary separating two line segments, areas
or volumes without having to carry explicitly an auxiliary variable that is significant only
on the boundary. In fact, the IEEE standards’ specifications for zero’s sign work so auto-
matically as often to expunge an obscure bug that infests programs, written originally for
other machines, to handle conformal maps of slitted domains in the complex plane. The
bug causes parts of a mapped region’s boundary to go astray, but not on an IEEE machine;
see my paper Branch Cuts for Complez Elementary Functions.

Topological redefinition affects programmers in another subtle way that transcends presub-
stitution or the acceptance of defaults; it influences the programmer’s attitude to the flags
that memorialize the occurence of certain exceptions. For instance, having closed the real
axis at oo, a programmer will ignore DIVBZ but not INVLD. (This can be difficult on
certain machines, CRAYs and INMOS T800 Transputers among them, that raise the same
flag for both exceptions.)
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More generally, at least for programs intended to run in IEEE standard environments, one
can almost determine what domain the programmer had in mind by finding out which
exceptions his program ignores. A program that ignores none of them, not even INXCT, is
probably using floating-point arithmetic for integers wider than can be handled conveniently
by the environment’s fixed-point variables. (The COMP format on APPLE computers is a
64-bit integer format implemented in floating-point hardware when that is fastest, in which
case INXCT gets translated into Integer Overflow.) Most programs ignore the INXCT
exception when they are approximating real numbers by floating-point numbers. They
ignore UNFLO too when the programmer believes that all errors with sufficiently small
absolute values are acceptable; but if errors must stay relatively small then neither UNFLO
nor OVFLO can be ignored. DIVBZ can be ignored by computations that treat the real
axis as closed at infinity, either by one point at oo as is appropriate for algebraic functions,
or by two points +o0o as is appropriate for transcendental functions like exp(z) that are
discontinuous across co. Functions like arctan(z) that are one-sidedly continuous at +oo
can accept arguments z that have overflowed to £oo and ignore OVFLO. But INVLD must
never be ignored.

How does a program not ignore exceptions? By tests. In IEEE environments it can test for
a default value before it is over-written, or test a flag somewhat later. That flag allows one
program to defer judgment to a later program where the exception’s consequences may be
easier to assess, provided execution has not been terminated.

Programs intended to be portable to machines that lack support for flags have only three
strategies available. They can test before every operation that could be exceptional and
branch to avoid the exception; this strategy can entangle a program in spaghetti-like
branches, but it keeps control within the program. Second, in some environments, the
program can specify a trap-handler to try an alternative computation in lieu of one that
has aborted; this strategy is really the same as the first except that the spaghetti is invisible
and therefore harder to debug. Third, a program may test default values promptly to know
when an exception has occurred. This is costly and risky. For instance, results contaminated
by underflow must be detected by comparison against a tiny threshold chosen aptly for the
computer, taking into account ambiguities associated with gradual, partial and operation-
dependent underflows. Similar considerations apply to overflow with the added proviso that
computation be not halted. Predicates like “(1.0E37)/(1.04abs(z)) > 0.0”, which is false
when z is 0o on any machine that has it but ¢rue for every finite z on all current computers,
serve as portable ways to discriminate between infinite and finite values z. The simpler
predicate “z — r = = — z” works on IEEE standard hardware where oo — oo is NaN and
NaN # NaN, but other hardware may behave differently and, besides, a compiler too clever
by half may simply discard that predicate. The predicate “z = z” could suffer a similar fate
rather than discriminate between NaNs and numbers. In the light of the anarchic variation
among the arithmetics of computers other than those that conform to the IEEE standards,
language standards could regularize exception-handling better by adopting standard names
for machine-dependent subsets of IEEE standard flags and defaults than by attempts to
supplement the languages’ control structures with invisible tests and branches.

Whatever the exceptions and side-effects that can arise during multiplication and division,
and whatever the options that a computing environment provides for these exceptions, at
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least these must apply equally well to exponentiation, although it will be subject to addi-
tional INVLD exceptions like (—4.0)%5 that cannot afflict multiplication and division. We
do not have the power to specify too closely how everyone has to respond to exceptional ex-
ponentiations; instead we can at best specify which exponentials should not be exceptional,
and why. '

Exponentiation defined Algebraically:
Descartes’ definition of 1637,

n

"=g.2-2-...:-2-2,

n copies of =

is accepted universally only when n is a positive integer, and then z may be any extended
real (or complex) number (or matrix). Our first objective is to extend Descarte’s definition
so that z7 will make sense for every integer j, positive or not. z7 should be an extended real
whenever z is. Ideally the extension should be parsimonious, entailing as few assumptions
as possible, and therefore implying a minimum of special cases. The definition that results
from this parsimony is displayed in a table below, after which comes an explanation to
justify those entries, in the middle column, that differ from other opinions.

EXPONENTIATION gz’

Jj<0 |j=0]17>0
zin X /=)~ 1 z’
z is NaN ] T

Three aspects of the foregoing table deserve explanation. First is the assignment 20 =1
regardless of whether z is 0, oo or NaN. Second is the trouble caused by roundoff, which
obliges us to use unobvious algorithms to achieve respectable accuracy in all cases. Third
are the side-effects. One of them is the INXCT signal, which may have to be emitted
undeservedly on occasions when inhibiting it is too expensive. Another is the DIVBZ
signal, which must arise when 07 = (1/0)~/ = 00/ = oo is calculated for j < 0. And
when z7 is finite and nonzero but too huge or too tiny to represent within the normal range
of floating-point numbers, then OVFLO or UNFLO respectively must be signaled and a
suitable default value must be supplied, with care not to signal OVFLO when UNFLO is
deserved or vice-versa. Finally, the signs that the IEEE standards attach to £0 and +o0
must be respected. All will be explained below.

A Parsimonious Set of Postulates:

Historically, the meaning of ¢/ when j < 0 appears to have evolved from the observation
that ¢™+® = (c™)-(c") for all positive integers m and n, followed by an insistence that this
equation be satisfied when m and n are replaced by arbitrary integers ¢ and j regardless
of their signs. This approach turns out to be incapable of defining 0°, so it has led some
people to infer illogically that 0° must be undefinable. Let us follow this approach for a
while to see what happens. '

We postulate first the existence of a function P(z,?) whose values, when defined, lie in X
for all z in X and every i in I, and satisfy the noncontroversial defining relations
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1. P(z,1)==z,and
2. P(z,i+j)= P(z,%)- P(z,j) unless this product is undefined.

Relation 2 allows for the possibility that the left-hand side might be defined even when one
of the factors or their product on the right is not. We hope to deduce that P(z,j) = z’.
To this end, relation 1 is needed to preclude that P(z,j) be z¥7 for some arbitrarily fixed
but perverse k # 1. From these two relations soon follow familiar inferences:

P(z,n)=z"=g-z2-z-...- -7 -z for every n > 0.

"

n times
P(z,i.n) = P(P(z,i),n) = P(z,i)" for every n > 0.

For every integer 7, positive or negative or zero, and for all nonzero finite b and
cin R/

P(b-c,i) = P(b,)- P(c,i) and
P(c,—i) =1/P(c,i) = P(1/c,i) and P(c,0) = 1.

Therefore the two relations above do define P(z,j) = z7 either when j > 0 or when z lies
in R'; but the remaining cases

P(0,0), P(00,0),P(0,—n) and P(c0,—n) when —n <0
are left ambiguous. The clearly undesirable assignments
P(0,0) = P(0,—n) = 0 and P(00,0) = P(00,—1n) = 00

are no less compatible with relations 1 and 2 then are the more reasonable assignments for
respectively 0%, 0—", co® and co~™ in the table above. This ambiguity is intolerable mostly
because it is unnecessary; just because 0 is not defined unambiguously for j < 0 by one
set of postulates, however familiar, is no reason to deny some other familiar and equally
parsimonious set an opportunity to do the job.

Here is a pair of postulates almost as familiar and equally as parsimonious as the previous
pair:

I. P(z,0)=1,and
II: P(z,i+1)= P(z,{)-z unless this product is undefined.

And this pair majorizes the previous pair in the sense that both agree on the definition of
P(xz,j) = 27 wherever the previous pair defined it, but this pair defines it for all extended
real z, finite or not, and all integers j regardless of sign. The table above is drawn from
these defining relations.

Although the first of these defining relations may seem a self-serving postulate in a document
purporting to draw it as a conclusion, these postulates are not unprecedented; they may be
found in texts like L. E. Sigler’s Algebra (p. 104). Neither are they the only set of postulates
that define P(z,j) = /. However, every other set that defines P(z,7) unambiguously at
z = 0 and ¢ = oo regardless of the sign of j, differing only at P(0,0) and P(00,0), must
imply postulate I for all other z; in so far as it uses an additional postulate or predicate to
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(un)define P(0,0) and P(o0,0) different from 1, such a set cannot be so brief as postulates
Iand IL

Finally, postulate I is consistent with other practices common in texts and the mathematical
literature. For one example, the polynomial ag+a;2 +a3z%+...4a,z" is often abbreviated
TBa;z’, which is valid at z = 0 only if 0° = 1. Another example is the conventional
interpretation of sums and products -

n n
Y osi=si+s2+...+spand [[ti=t1-ta-...-ta
1 1

when they are empty (when n = 0); Y0 s, = 0 and []3 ¢ = 1. (0 and 1 are the respective
identities for + and - operators.) Therefore the identification of z" with that product when
every t,, = z, valid for n > 0, would be violated at » = 0 by any other definition of z"
inconsistent with postulate I. Thus, postulate I provides the unique acceptable definition
1 for 0° and o0?, if they are to be defined at all; therefore, leaving them undefined seems
more wilful than prudent.

A proof that postulates I and II are effective over the extended reals X has not
appeared elsewhere that I know, so here it is:

By induction, as in Sigler’s text, we may prove for every j in I and all z in R’ that
P(z,5) = 7. Also easy to prove is P(0,n) = 0" = 0 and P(o0,n) = oo™ = 00
for all integers » > 0. The remaining cases are P(0,—n) and P(co,—n). Now,
P(0,-1) cannot be finite lest 1 = P(0,1 — 1) = 0. P(0,—1) = 0; therefore
P(0,-1) = co = 0-!. Similarly, P(c0,—1) = 0 = co~!. Then a similar argu-
ment combined with induction establishes for n > 1 that P(0,—n) =00 =07"
and P(c0,—n)=0=o00"". Q.E.D.

The answer is the same whether we think of co as an integer or not. If oo is not an integer
then the two expressions above are defined by (3) above to be respectively infinite and zero,
and then 400 and +0 are the signed values that follow the rule of Signs two paragraphs
ago. If co is an integer, we must decide whether it is even or odd; since all sufficiently big
floating-point numbers in North American computers are even integers, taking the limit
implies the same for co. Therefore (—3)** = 400 and (—3)"* = +0. This conclusion
could change on ternary computers, but programmers are used to that kind of risk.

A program for Real z¥ :
Here are the specifications to be met:

EXPONENTIATION z¥ with y = integer j

j<0 |ji=0 i>0
zin X (1/z)~ 1 z’
z is NaN x _ T
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EXPONENTIATION ¥ with y # integer

= —00 —oo<y<0|0<y<+oo y=+4o0
z< -1 +0 400
z=-1 NaN *
-1<z<0 |
z=0 +00 +o0* | +0
0<z<l1
z=1 NaN * exp(y - In(z)) NaN *
1<z <400
T = 400 +0 [ +00
z is NaN z

All entries in this table except (z < 0)**, 0(#>9) and 0~*° are produced automatically,
including the signals where marked by an *, by the expression exp(y - In(z)) provided it
is evaluated in a way analogous to the specifications of the IEEE standards, and then the
expression exp(NaN-In(z)) quietly produces NaN for V%V too. In the previous table 1/0
signals DIVBZ.

Fortran libraries often use two subroutines, one to compute X * *J by repeated squaring
and multiplication for INTEGER J, another to compute X * Y from an expression like
EXP(Y-ALOG(X)) for REAL Y. We shall treat both cases together because speed and
accuracy can be enhanced by using the first method when |Y| is a small integer, and the
second when |J| is not. The first method loses roughly |J| units in the last significant digit
carried. The second is no worse than if it altered the last digit or two of Y'; this implies that
about as many significant digits will be lost in X * *Y as are needed to hold its exponent in
its floating-point representation. This error can be substantially diminished at very low cost
by carrying a few extra digits in a few operations; an example of a program that does so may
be found in the 4.3 BSD UNIX Math. Library, and similar programs are in use by Apple,
DEC, IBM and Sun in their Fortran libraries so the details will not be presented here. No
such inexpensive way to diminish error is known for the first method that computes X * +J
unless |J| is kept very small. (-1 < J < 2 is easy.)

The program offered below is structured in a way that reflects the definitions above except
that, in deference to Fortran, P(z,j) is not defined recursively. Instead, a subfunction
Q(z,n) is defined to compute zn for small positive integers n using the squaring function
z2, which is assumed to be as atomic as * (multiplication) so that the same program can
be used later for complex variables and matrices. Then Q(z,n) is invoked by P(z,j) to
compute z’ for integers j of arbitrary sign and small magnitude. Later the real functions
In(...) and exp(...) are assumed to be atomic in that they handle their exceptions just as
if they were rational operations; the exceptions for In(z) are INXCT when z is not 0, 1 or
+00, DIVBZ when z = 0, and FODOM when z < 0; the exceptions for exp(z) are just
INXCT when z is not 0, +00 or —00, and OVFLO and UNFLO.

One swapping function called Flag(xcept, oldflag) is used to sense, save and restore the
exception flags; for example, OvSav := Flag (OVFLO, false ) copies the OVFLO flaginto the
variable OvSav ( of type flags — a combination of boolean and pointer ), and then clears it to
a null state. A similar trapping function called Ftrap is used to save the exception-handling
modes, institute the defaults for exceptions, and then restore the exception-handling status
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quo ante. The defaults are presumed to be those defined by the IEEE standards; other
defaults, especially finite approximations to oo, may entail rearrangement of the tests and
branches. Even so, exceptions and other special cases are handled with scarcely more code
than would appear in any efficient implementation of z¥ regardless of the style of arithmetic,
IEEE standard or not, and regardless of decisions about which cases should be exceptional.

All arguments to procedures are passed by value so that they may be overwritten. The
scratch variables t and u can be extra-precise variables to yield better accuracy in the final
result. All signals necessitated by exceptions occur at the sign ... * during the computation
of t or u. These signals include INXCT, UNFLO and OVFLO for obvious reasons when

necessary, and ...

DIVBZ when z =0 and —00 < ¥y < 0,
INVLD (ZTMSI) when |z] =1 and |y| = oo,
or (FODOM) when z < 0 and y is neither integer nor +oo.

Real procedure x**y :
Real value x, y;

Real subprocedure Q(t,n): ... = t**n by repeated squaring,

Real value t; integer value n; ... only for n > O.
Real u;
while n is even do { ¢t := t**2; n :=n/2 }; ... *
u = t;
repeat { n := n/2 chopped to integer;

if n=0 then return Q := u; ... and exit.

t = t**2; R

if n is odd then u := u * t } el ®

until false ; ... i.e. forever.

n = 16 is the smallest n for which this program
performs more real multiplications than the fewest
necessary, namely 6 instead of 5. If it is to
... be used only for very small n, a fast table-driven
... version of this program should replace it, and then
another table of thresholds for |t| can be used to

... forestall spurious overflow inside P(...,...).
end Q ; .
Real subprocedure P(x,j): ... x**j for integer j <> O.
Real value x; integer value j;
Real t;
Flags OvSav, UnSav;
TrapHandlers OvTrpSav, UnTrpSav; ... program pointers.
If j < O then ... Stop spurious signals
{ OvSav := Flag(OVFLO,false); ... when j < 0.;
UnSav := Flag(UNFLO,false);
OvTrpSav := Ftrap(OVFLO,default);
UnTrpSav := Ftrap(UNFLO,default);
t := Q(x,-j);
OvTrpSav := Ftrap(OVFLO,OvTrpSav);

UnTrpSav := Ftrap(OVFLO,UnTrpSav);
If Flag(OVFLO,OvSav) or Flag(UNFLO,UnSav)
then return P := Q(1/x,-j)
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else return P := 1/t }
else return P := Q(x,j);

End P(x,1i).

Real s, t;

If y=0 then return x**y := 1; +.. X*%0 exit.

8 := 1; - ... will record the sign of x#**y.
If y is integer-valued then ... y must be finite ...

{ it Iyl is 1 or 2 or not too big
then return x##y := P(x,integer(y)); ... exit.

if y is odd then s := CopySign(1,x); ... = +/- 1.
x := x| }
else if |yl = Inf or [x| = Inf then x := |xl;
I2 x = 0 then ' ... deal with exits that eschew 1ln(0) ...

{ it y = |yl then return xs*y := s . 0; ... 0 exit.
if y = -Inf then return x**y := +Inf };... infinity exit.

t := exp(y * 1n(x)); ... computed with extra precision. ...

Return x**y := g * t; ... last exit.

End x**y. ... DANGER: NOT YET FULLY TESTED!
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