Differences exist between documents.

New Document:
Pages from n3047 C2X-draft
5 pages (309 KB)
10/08/2022 13:35:18
Used to display results.

Old Document:
Pages from n2478 C3-Feb2020-draft
4 pages (221 KB)
10/08/2022 13:35:18

Get started: first change is on page 1.
No pages were deleted

How to read this report

Highlight indicates a change.
Deleted indicates deleted content.
\square indicates pages were changed.
$\Leftrightarrow \ggg>$ indicates pages were moved.

EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and double-precision numbers in IEC $60559,{ }^{29}$ and the appropriate values in a <float. $h>$ header for types float and double:

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.9), complex arithmetic <complex. $\mathrm{h}>$ (7.3), extended multibyte and wide character utilities <wchar. $\mathrm{h}>$ (7.31), floatingpoint environment <fenv. h> (7.6), general utilities <stdlib.h> (7.24), input/output <stdio.h> (7.23), mathematics <math. \gg (7.12), IEC 60559 floating-point arithmetic (Annex F), IEC 60559compatible complex arithmetic (Annex G).

5.2.4.2.3 Characteristics of decimal floating types in <float. $h>$

1 This subclause specifies macros in <float. $\mathrm{h}>$ that provide characteristics of decimal floating types (an optional feature) in terms of the model presented in 5.2.4.2.2. An implementation that does not support decimal floating types shall not provide these macros. The prefixes DEC32_, DEC64_, and DEC128_ denote the types _Decimal32,_Decimal64, and _Decimal128 respectively.

2 DEC_EVAL_METHOD is the decimal floating-point analog of FLT_EVAL_METHOD (5.2.4.2.2). Its implementation-defined value characterizes the use of evaluation formats for decimal floating 人

[^0]
types:

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;
1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and precision of the _Decimal64 type, evaluate _Decimal128 operations and constants to the range and precision of the _Decimal128 type;

2 evaluate all operations and constants to the range and precision of the _Decimal128 type.
3. Each of the decimal signaling NaN macros

DEC32_SNAN
DEC64_SNAN
DEC128_SNAN
expands to a constant expression of the respective decimal floating type representing a signaling NaN . If an optional unary + or - operator followed by a signaling NaN macro is used for initializing an object of the same type that has static or thread storage duration, the object is initialized with a signaling NaN value.
4 The macro

DEC_INFINITY

expands to a constant expression of type_Decimal32 representing positive infinity.

5

The macro

DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NaN .

6 ҺThe integer values given in the following lists shall be replaced by constant expressions suitable for use in \#if preprocessing directives:

- radix of exponent representation, $b(=10)$

For the standard floating types, this value is implementation-defined and is specified by the macro FLT_RADIX. For the decimal floating types there is no corresponding macro, since the value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a description of a function that has versions that operate on decimal floating types, it is noted that for the decimal floating-point versions the value used is implicitly 10, rather than FLT_RADIX.

- number of digits in the coefficient

```
DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34
```

- minimum exponent

DEC32_MAX_EXP	97	-
DEC64_MAX_EXP	385	
DEC128_MAX_EXP	6145	

- maximum representable finite decimal floating-point number (there are 6,15 and 33 9's after the decimal points respectively)

```
DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.9999999999999999999999999999999999E6144DL
```

— the difference between 1 and the least value greater than 1 that is representable in the given floating type

```
DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL
```

- minimum normalized positive decimal floating-point number

```
DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL
```

- minimum positive subnormal decimal floating-point number

```
DEC32_TRUE_MIN
0.000001E-95DF
DEC64_TRUE_MIN
0.000000000000001E-383DD
DEC128_TRUE_MIN
0.000000000000000000000000000000001E-6143DL
```

7 For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent model where the significand is represented with integer rather than fraction digits. With s, b, e, p, and f_{k} as defined in 5.2.4.2.2, a floating-point number x is defined by the model:

$$
x=s \cdot b^{(e-p)} \sum_{k=1}^{p} f_{k} \cdot b^{(p-k)}
$$

8 With b fixed to 10 , a decimal floating-point number x is thus:

$$
x=s \cdot 10^{(e-p)} \sum_{k=1}^{p} f_{k} \cdot 10^{(p-k)}
$$

The quantum exponent is $q=e-p$ and the coefficient is $c=f_{1} f_{2} \cdots f_{p}$, which is an integer between 0 and $10^{(p-1)}$, inclusive. Thus, $x=s \cdot c \cdot 10^{q}$ is represented by the triple of integers (s, c, q). The quantum of x is 10^{q}, which is the value of a unit in the last place of the coefficient.

Quantum exponent ranges

Type	_Decimal32	_Decimal64	_Decimal128
Maximum Quantum Exponent $\left(q_{\max }\right)$	90	369	6111
Minimum Quantum Exponent $\left(q_{\min }\right)$	-101	-398	-6176

9 " For binary floating-point arithmetic following IEC 60559, representations in the model described
$I-$ in 5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However, for
\lfloor decimal floating-point arithmetic, representations that have the same numerical value but different quantum exponents, e.g., $(+1,10,-1)$ representing 1.0 and $(+1,100,-2)$ representing 1.00 , are distinguishable. To facilitate exact fixed-point calculation, operation results that are of decimal floating type have a preferred quantum exponent, as specified in IEC 60559, which is determined by the quantum exponents of the operands if they have decimal floating types (or by specific rules for conversions from other types). The table below gives rules for determining preferred quantum exponents for results of IEC 60559 operations, and for other operations specified in this document. When exact, these operations produce a result with their preferred quantum exponent, or as close to it as possible within the limitations of the type. When inexact, these operations produce a result with the least possible quantum exponent. For example, the preferred quantum exponent for addition is the minimum of the quantum exponents of the operands. Hence $(+1,123,-2)+(+1,4000,-3)=(+1,5230,-3)$ or $1.23+4.000=5.230$.
10 The following table shows, for each operation delivering a result in decimal floating-point format, how the preferred quantum exponents of the operands, $Q(\mathrm{x}), Q(\mathrm{y})$, etc., determine the preferred quantum exponent of the operation result, provided the table formula is defined for the arguments. For the cases where the formula is undefined and the function result is $\pm \infty$, the preferred quantum exponent is immaterial because the quantum exponent of $\pm \infty$ is defined to be infinity. For the other cases where the formula is undefined and the function result is finite, the preferred quantum exponent is unspecified ${ }^{30}$.

Preferred quantum exponents

Operation	Preferred quantum exponent of result
roundeven, round, trunc, ceil, floor, rint, nearbyint	$\max (Q(\mathrm{x}), 0)$
nextup, nextdown, nextafter, nexttoward	least possible
remainder	$\min (Q(x), Q(\mathrm{y})$)
fmin, \quad fmax, fminimum, \quad fmaximum, fminimum_mag, fmaximum_mag, fminimum_num, fmaximum_num, fminimum_mag_num, fmaximum_mag_num fminer	$Q(\mathrm{x})$ if x gives the result, $Q(\mathrm{y})$ if y gives the result
scalbn, scalbln	$Q(\mathrm{x})+\mathrm{n}$
ldexp	$Q(\mathrm{x})+\mathrm{p}$
logb	0
+, d32add, d64add	$\min (Q(\mathrm{x}), Q(\mathrm{y})$)
-, d32sub, d64sub	$\min (Q(\mathrm{x}), Q(\mathrm{y})$)
*, d32mul, d64mul	$Q(\mathrm{x})+Q(\mathrm{y})$
/, d32div, d64div	$Q(\mathrm{x})-Q(\mathrm{y})$
sqrt, d32sqrt, d64sqrt	\Q(x)/2 ${ }^{\text {d }}$
fma, d32 fma, d64fma	$\min (Q(\mathrm{x})+Q(\mathrm{y}), Q(\mathrm{z}))$
conversion from integer type	0
exact conversion from non-decimal floating type	0
inexact conversion from non-decimal floating type	least possible
conversion between decimal floating types	$Q(\mathrm{x})$
cx returned by canonicalize	$Q(x)$
strto, wcsto, scanf, floating constants of decimal floating type	see 7.24.1.6
- (x),$+(\mathrm{x})$	$Q(\mathrm{x})$
fabs	$Q(\mathrm{x})$
copysign	$Q(\mathrm{x})$
quantize	$Q(\mathrm{y})$

${ }^{(30)}$ Although unspecified in IEC 60559, a preferred quantum exponent of 0 for these cases would be a reasonable implementation choice.

quantum	$Q(\mathrm{x})$
*encptr returned by encodedec, encodebin	Q (*xptr)
*xptr returned by decodedec, decodebin	Q (*encptr)
fmod	$\min (Q(\mathrm{x}), Q(\mathrm{y})$)
fdim	$\min ((Q) \mathrm{x}), Q(\mathrm{y}))$ if $\mathrm{x}>\mathrm{y}, 0$ if $\mathrm{x} \leq \mathrm{y}$
cbrt	[Q(x)/3 \rfloor
hypot	$\min (Q(\mathrm{x}), Q(\mathrm{y})) \lambda$
pow	$\lfloor\mathrm{y} \times Q(\mathrm{x})\rfloor$
modf	Q (value)
*iptr returned by modf	$\max (Q$ (value), 0)
frexp	Q (value) if value $=0,-$ (length of coefficient of value) otherwise
*res returned by setpayload, setpayloadsig	0 if pl does not represent a valid payload, not applicable otherwise (NaN returned)
getpayload	0 if $* \mathrm{x}$ is a NaN, unspecified otherwise
compoundn	$\lfloor n \times \min (0, Q(x))\rfloor$
pown	$\lfloor n \times Q(x)\rfloor$
powr	$\lfloor y \times Q(x)\rfloor$
rootn	$\lfloor Q(x) / n\rfloor$
rsqrt	$-\lfloor Q(x) / 2\rfloor$
transcendental functions	0

A function family listed in the table above indicates the functions for all decimal floating types, where the function family is represented by the name of the functions without a suffix. For example, ceil indicates the functions ceild32, ceild64, and ceild128.
Forward references: extended multibyte and wide character utilities <wchar. $\mathrm{h}>$ (7.31), floatingpoint environment <fenv.h> (7.6), general utilities <stdlib.h> (7.24), input/output <stdio.h> (7.23), mathematics <math.h> (7.12), type-generic mathematics <tgmath.h> (7.27), IEC 60559 floating-point arithmetic (Annex F).

[^0]: ${ }^{29)}$ The floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less than shown here.

